Math, asked by nNirajkumarYadav1, 1 year ago

find d.c of the line whose equation is

Attachments:

Answers

Answered by shadowsabers03
3

Given equation of line is,

\longrightarrow\dfrac{x-3}{2}=\dfrac{y-4}{3}=\dfrac{z-1}{5}

The line in vector form is,

\longrightarrow\vec r=\left(3\,\hat i+4\,\hat j+\hat k\right)+\lambda\left(2\,\hat i+3\,\hat j+5\,\hat k\right)

Clearly the vector 2\,\hat i+3\,\hat j+5\,\hat k is a direction ratio of the line.

\longrightarrow\vec{b}=2\,\hat i+3\,\hat j+5\,\hat k

Its magnitude is,

\longrightarrow b=\sqrt{2^2+3^2+5^2}

\longrightarrow b=\sqrt{38}

Hence, the direction cosine of the line is,

\longrightarrow\underline{\underline{\hat b=\pm\dfrac{1}{\sqrt{38}}\left(2\,\hat i+3\,\hat j+5\,\hat k\right)}}

Similar questions