Math, asked by divyaarya229, 8 months ago

find d/dx [ 15 log (x) ]​

Answers

Answered by Asterinn
3

 \implies \dfrac{d(15 log(x) \: ) }{dx}

\implies15 \times  \dfrac{d(log(x) \: ) }{dx}

We know that :-

  • d(log t)/dt = 1/t

using Chain rule:-

\implies15 \times   \dfrac{1}{x}    \times \dfrac{d(x)  }{dx}

\implies15 \times   \dfrac{1}{x}    \times 1

\implies   \dfrac{15}{x}

Answer :

 \dfrac{d(15 log(x) \: ) }{dx} = \dfrac{15}{x}

____________________

Learn more :-

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

__________________

Similar questions