Math, asked by sairakukku, 1 year ago

Find d/dx [e^x logx/sin 2x]

Answers

Answered by amitansuparida202
2

Answer:

hope this helps,.........................

Attachments:
Answered by lublana
0

\frac{d(\frac{e^xlogx}{sin2x})}{dx}=\frac{e^xlogx(sin2x-2cos2x)+\frac{e^xsin2x}{x}}{sin^22x}

Step-by-step explanation:

\frac{d(\frac{e^xlog x}{sin 2x}}{dx}

We know that

\frac{d(u\cdot v)}{dx}=u'v+v'u...(1)

\frac{d(\frac{u}{v})}{dx}=\frac{u'v-v'u}{v^2}...(2)

u=e^x,v=logx

By using the formula (1)

\frac{d(e^xlogx)}{dx}=e^xlogx+e^x\times\frac{1}{x}=e^xlogx+\frac{e^x}{x}

Formula used \frac{d(e^x)}{dx}=e^x,\frac{d(logx)}{dx}=\frac{1}{x}

u=e^xlogx,v=sin2x

By formula (2)

\frac{d(\frac{e^xlogx}{sin2x})}{dx}=\frac{(e^xlogx+\frac{e^x}{x})sin2x-2cos2x\times e^xlogx}{(sin2x)^2}

\frac{d(\frac{e^xlogx}{sin2x})}{dx}=\frac{e^xsin2xlogx+\frac{e^xsin2x}{x}-2cos2xe^xlogx}{sin^22x}

Formula used\frac{d(sinx)}{dx}=cosx

\frac{d(\frac{e^xlogx}{sin2x})}{dx}=\frac{e^xlogx(sin2x-2cos2x)+\frac{e^xsin2x}{x}}{sin^22x}

#Learns more:

Y=sin^2x×logx ...differentiate with respect to d÷dx​

https://brainly.in/question/9425316:answered by Sk2

Similar questions