Math, asked by AsifKhan4987, 1 day ago

find d/dx of square root x+1/x-1

Answers

Answered by harishiva6753
0

Answer:

\frac{d}{dx}(\sqrt{\frac{x+1}{x-1}})

by rationalising the numerator

\frac{d}{dx}(\sqrt{\frac{x+1}{x-1}} \sqrt{\frac{x+1}{x+1} } )

\frac{d}{dx} (\frac{x+1}{\sqrt{x^{2} -1} } )

\frac{d}{dx}(\frac{x}{\sqrt{x^{2} -1} } ) + \frac{d}{dx}(\frac{1}{\sqrt{x^{2} -1} })\\

using u/v formula

\frac{\sqrt{x^{2} -1}  -x(\frac{1}{2\sqrt{x^{2} -1}})}{x^{2} -1} + \frac{-1(\frac{1}{2(\sqrt{ {x^{2} -1}) } })}{x^{2} -1}

\frac{{\sqrt{x^{2} -1}  -(x+1)(\frac{1}{2\sqrt{x^{2} -1}})}{}}{x^{2} -1}

By taking L.C.M in the numerator

\frac{2x^{2} -x-3}{x^{2} -1}

Similar questions