Math, asked by malihakh17, 6 months ago

find d/dx of the function
f(x) = x^2/3 ​

Answers

Answered by Asterinn
3

 \bf \large f(x) =  \dfrac{ {x}^{2} }{3}

Differentiating both sides :

 \implies\sf   \dfrac{d(f(x))}{dx}  =   \dfrac{d(\dfrac{ {x}^{2} }{3})}{dx}

 \implies\sf   \dfrac{d(f(x))}{dx}  =   \dfrac{1}{3}  \dfrac{d{ ({x}^{2}) }}{dx}

We know that :-

 \underline{ \boxed{\bf \large \dfrac{d{ ({x}^{n}) }}{dx}   = a \:  {x}^{n - 1} }}

\sf \implies  \dfrac{d(f(x))}{dx}  =   \dfrac{1}{3}  \times 2 \times ({x})^{2 - 1}

\sf \implies  \dfrac{d(f(x))}{dx}  =   \dfrac{2x}{3}

Answer :

  • d/dx of the function f(x) = x^2/3 = 2x/3

____________________

  \pink{\underline {\large\bf\blue{Additional-Information}}}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

Similar questions