Math, asked by Ridhima7722, 1 year ago

Find d/dx tan⁻¹ √1+x²+√1-x²/√1+x²+√1-x² | x | < 1

Answers

Answered by rishu6845
0

Answer:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by rani76418910
0

Correct answer is  \frac{\mathrm{d} }{\mathrm{d} x}f_{x} = 1

Explanation :

Let,  \frac{\mathrm{d}}{\mathrm{d}x}f_{x} = \frac{\mathrm{d} }{\mathrm{d} x}tan^{-1}\frac{\sqrt(1 + x^{2}) + \sqrt(1 - x^{2})}{\sqrt(1 + x^{2})- \sqrt(1 - x^{2})}  

 f_{x} = tan^{-1}\frac{\sqrt(1 + x^{2}) + \sqrt(1 - x^{2})}{\sqrt(1 + x^{2})- \sqrt(1 - x^{2})}

Let,  x^{2} = \sin2x

 f_{x} = tan^{-1}\frac{\sqrt(\sin^{2}x + \cos^{2}+ 2\sin x \cos x ) + \sqrt(\sin^{2}x + \cos^{2}- 2\sin x \cos x)}{\sqrt(\sin^{2}x + \cos^{2}+ 2\sin x \cos x)- \sqrt(\sin^{2}x + \cos^{2}- 2\sin x \cos x)}

 f_{x} = tan^{-1}(\frac{2\sin x}{2\cos x}) = tan^{-1}(\tan x) = x

Correct answer is  \frac{\mathrm{d} }{\mathrm{d} x}f_{x} = 1 .

Similar questions