Math, asked by mdmaahir21ozngr2, 8 months ago

find d/dx tan^-1√x is

Answers

Answered by BrainlyTornado
0

ANSWER:

 \bf{\frac{d}{dx} ( { \tan}^{ - 1}  \sqrt{x} ) =  \frac{1}{1 +  x } }

GIVEN:

√x

TO FIND:

\frac{d}{dx} ( { \tan}^{ - 1}  \sqrt{x} )

FORMULA:

\frac{d}{dx} ( { \tan}^{ - 1}x ) =  \frac{ 1}{1   +  {x}^{2} }

EXPLANATION:

\frac{d}{dx} ( { \tan}^{ - 1}  \sqrt{x} ) =  \frac{1}{1 +  {( \sqrt{x} )}^{2} }

\frac{1}{1 +  {( \sqrt{x} )}^{2} }  =  \frac{1}{1 + x}

\frac{d}{dx} ( { \tan}^{ - 1}  \sqrt{x} ) =  \frac{1}{1 +  x }

SOME FORMULAE:

\frac{d}{dx} ( { \sin}^{ - 1}x ) =  \frac{1}{ \sqrt{1  - {x}^{2}}  }  \\  \\ \frac{d}{dx} ( { \cos}^{ - 1}x ) =  \frac{ - 1}{ \sqrt{1  - {x}^{2}}  }  \\  \\ \frac{d}{dx} ( { \cot}^{ - 1}x ) =  \frac{ - 1}{1   +  {x}^{2} }

 \frac{d}{dx} (constant) = 0 \\  \\  \frac{d}{dx} x = 1 \\  \\ \frac{d}{dx}( {x}^{2} )= 2x \\  \\ \frac{d}{dx} log(x)  =  \frac{1}{x}  \\  \\ \frac{d}{dx} {x}^{n}  = n {x}^{n - 1}

Similar questions