find d/dx=
Answers
We know,
Then we get,
Since
We know,
\displaystyle\sf {\log\left (\dfrac {a}{b}\right)=\log a-\log b}log(
b
a
)=loga−logb
\displaystyle\sf {\log (a^b)=b\log a}log(a
b
)=bloga
Then we get,
\displaystyle\sf{\longrightarrow\dfrac {d}{dx}\left [\log\left (\dfrac {x+1}{\sqrt {x-2}}\right)\right]=\dfrac {d}{dx}\left [\log(x+1)-\dfrac {1}{2}\log (x-2)\right]}⟶
dx
d
[log(
x−2
x+1
)]=
dx
d
[log(x+1)−
2
1
log(x−2)]
Since \displaystyle\sf {\dfrac {d}{dx}\left [\log (f(x))\right]=\dfrac {f'(x)}{f(x)},}
dx
d
[log(f(x))]=
f(x)
f
′
(x)
,
\displaystyle\sf{\longrightarrow\dfrac {d}{dx}\left [\log\left (\dfrac {x+1}{\sqrt {x-2}}\right)\right]=\dfrac {1}{x+1}-\dfrac {1}{2}\cdot\dfrac {1}{x-2}}⟶
dx
d
[log(
x−2
x+1
)]=
x+1
1
−
2
1
⋅
x−2
1
\displaystyle\sf{\longrightarrow\dfrac {d}{dx}\left [\log\left (\dfrac {x+1}{\sqrt {x-2}}\right)\right]=\dfrac {1}{x+1}-\dfrac {1}{2(x-2)}}⟶
dx
d
[log(
x−2
x+1
)]=
x+1
1
−
2(x−2)
1
\displaystyle\sf{\longrightarrow\underline {\underline {\dfrac {d}{dx}\left [\log\left (\dfrac {x+1}{\sqrt {x-2}}\right)\right]=\dfrac {x-5}{2(x+1)(x-2)}}}}⟶
dx
d
[log(
x−2
x+1
)]=
2(x+1)(x−2)
x−5