Physics, asked by chudasmasapnaba2507, 9 months ago

find d/dx when y=(1+x)/e^x​

Answers

Answered by Anonymous
18

Given :

Function

\bf\:y=\dfrac{1+x}{e^x}

To Find :

dy/dx or y'

{\red{\boxed{\large{\bold{Quotient\:Rule}}}}}

\sf\:(\dfrac{u}{v})'=\dfrac{vu'-uv'}{v^2},v\:\neq0

Solution :

We have:

\bf\:y=\dfrac{1+x}{e^x}

Now Differentiate with respect to x , by Quotient rule.

\sf\dfrac{dy}{dx}=\dfrac{(e^x)\frac{d(1+x)}{dx}-(1+x)\frac{d(e^x)}{dx}}{(e^x)^2}

\sf\dfrac{dy}{dx}=\dfrac{e^x(0+1)-(1+x)e^x}{(e^x)^2}

\sf\dfrac{dy}{dx}=\dfrac{e^x(1)-(1+x)e^x}{(e^x)^2}

\sf\dfrac{dy}{dx}=\dfrac{e^x-e^x-xe^x}{(e^x)^2}

\sf\dfrac{dy}{dx}=\dfrac{-xe^x}{(e^x)^2}

\sf\dfrac{dy}{dx}=\dfrac{-x}{e^x}

More Formula's Related to the topic :

1)\sf\frac{d(x^n)}{dx}=nx^{n-1}

2)\sf\frac{d(constant)}{dx}=0

3)\sf\frac{d(e^x)}{dx}=e^x

Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\dfrac{dy}{dx}=\dfrac{dy}{dt}\times\dfrac{dt}{du}\times\dfrac{du}{dx}

Answered by abdulrubfaheemi
0

Explanation:

Given :

Function

\bf\:y=\dfrac{1+x}{e^x}y=

e

x

1+x

To Find :

dy/dx or y'

{\red{\boxed{\large{\bold{Quotient\:Rule}}}}}

QuotientRule

\sf\:(\dfrac{u}{v})'=\dfrac{vu'-uv'}{v^2},v\:\neq0(

v

u

)

=

v

2

vu

−uv

,v

=0

Solution :

We have:

\bf\:y=\dfrac{1+x}{e^x}y=

e

x

1+x

Now Differentiate with respect to x , by Quotient rule.

\sf\dfrac{dy}{dx}=\dfrac{(e^x)\frac{d(1+x)}{dx}-(1+x)\frac{d(e^x)}{dx}}{(e^x)^2}

dx

dy

=

(e

x

)

2

(e

x

)

dx

d(1+x)

−(1+x)

dx

d(e

x

)

\sf\dfrac{dy}{dx}=\dfrac{e^x(0+1)-(1+x)e^x}{(e^x)^2}

dx

dy

=

(e

x

)

2

e

x

(0+1)−(1+x)e

x

\sf\dfrac{dy}{dx}=\dfrac{e^x(1)-(1+x)e^x}{(e^x)^2}

dx

dy

=

(e

x

)

2

e

x

(1)−(1+x)e

x

\sf\dfrac{dy}{dx}=\dfrac{e^x-e^x-xe^x}{(e^x)^2}

dx

dy

=

(e

x

)

2

e

x

−e

x

−xe

x

\sf\dfrac{dy}{dx}=\dfrac{-xe^x}{(e^x)^2}

dx

dy

=

(e

x

)

2

−xe

x

\sf\dfrac{dy}{dx}=\dfrac{-x}{e^x}

dx

dy

=

e

x

−x

More Formula's Related to the topic :

1)\sf\frac{d(x^n)}{dx}=nx^{n-1}1)

dx

d(x

n

)

=nx

n−1

2)\sf\frac{d(constant)}{dx}=02)

dx

d(constant)

=0

3)\sf\frac{d(e^x)}{dx}=e^x3)

dx

d(e

x

)

=e

x

•Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\dfrac{dy}{dx}=\dfrac{dy}{dt}\times\dfrac{dt}{du}\times\dfrac{du}{dx}

dx

dy

=

dt

dy

×

du

dt

×

dx

du

Similar questions