Math, asked by rinamohite0505, 7 months ago

find d
 \frac{d {}^{2}y }{dx {}^{2} }  \:  \:if \:  \: y = e {}^{5x}

Answers

Answered by Asterinn
3

Given :

y = {e}^{5x}

To find :

\dfrac{d ^{2}y }{dx ^{2} }

Solution :

 \implies \: y = {e}^{5x}

 \implies \:  \dfrac{dy}{dx}  =  \dfrac{d({e}^{5x})}{dx}

we know that :-

  • d(e^t)/dt = e^t

Using chain rule :-

\implies \:  \dfrac{dy}{dx}  = {e}^{5x} \:  \dfrac{d({5x})}{dx}

\implies \:  \dfrac{dy}{dx}  =5 {e}^{5x}

Now :-

\implies \dfrac{d ^{2}y }{dx ^{2} }  = \dfrac{d(5 {e}^{5x})}{dx}

\implies \dfrac{d ^{2}y }{dx ^{2} }  =5{e}^{5x}  \times \dfrac{d({5x})}{dx}

\implies \dfrac{d ^{2}y }{dx ^{2} }  =25 \: {e}^{5x}

Answer :

\dfrac{d ^{2}y }{dx ^{2} }  =25 \: {e}^{5x}

____________________

Learn more :-

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

__________________

Answered by Anonymous
1

Given ,

The function is  \tt y = e {}^{5x}

Differentiaing y wrt to x , we get

 \tt \frac{dy}{dx}  =  \frac{d}{dx}  {e}^{5x}

 \tt \frac{dy}{dx}  = {e}^{5x} \frac{d}{dx}  5x

 \tt \frac{dy}{dx}  = {e}^{5x}  \times 5

 \tt \frac{dy}{dx}  = 5{e}^{5x}

Again differentiaing wrt to x , we get

 \tt \frac{ {d}^{2} y}{d {x}^{2} }  = \frac{d}{dx}  5{e}^{5x}

 \tt \frac{ {d}^{2} y}{d {x}^{2} }  = 5{e}^{5x}\frac{d}{dx}  5x

 \tt \frac{ {d}^{2} y}{d {x}^{2} }  = 5{e}^{5x} \times 5

 \tt \frac{ {d}^{2} y}{d {x}^{2} }  = 25{e}^{5x}

Remmember :

 \tt \frac{d}{dx}  {e}^{x}= {e}^{x}

_____________ Keep Smiling

Similar questions