Math, asked by anu82devi, 2 months ago

find d^y/dx^2 if x = 2acos^3θ ; y = 3asin^2θ at θ = π/6

Answers

Answered by sandy1816
2

Answer:

Your answer attached in the photo

Attachments:
Answered by brainlyhero98
0

Step-by-step explanation:

x =  2a {cos}^{3} \theta, \: y = 3asin^2θ \\   \ \ \\\\ \ \ x =  2a {cos}^{3}  \theta \\  \frac{dx}{d \theta}  =  \frac{d}{d \theta} (2a {cos}^{3} \theta) \\  = 2a\frac{d}{d \theta}( {cos}^{3} \theta ) \\  = -  6a {cos}^{2}  \theta  sin \theta \\  \\ y = 3asin^2θ \\  \frac{dy}{d \theta}  =  \frac{d}{d \theta} (3asin^2θ) \\  = 3a\frac{d}{d \theta}( {sin}^{2} \theta ) \\  = 6asin \theta cos \theta \\   \\ \boxed{ \frac{dy}{d x}  =  \frac{ \frac{dy}{d \theta} }{ \frac{dx}{d \theta} } }\\\\\frac{dy}{d x}  =  \frac{ \frac{dy}{d \theta} }{ \frac{dx}{d \theta} }\\  \:\: \:\: \:\: \:\: \:\: \: \:\: \:\: = \frac{ \cancel{6a} \cancel{sin \theta}  \cancel{cos \theta }}{-   \cancel{6a }{cos}^{ \cancel{2}}  \theta  \cancel{ sin \theta} }  \\  =   - \frac{  1}{cos \theta}  \\  =  - sec \theta \\\\\\  \frac{dy}{dx}  =  - sec \theta \\  \frac{ {d}^{2}y }{d {x}^{2} }   =  \frac{d}{dx} ( - sec \theta) \\  =  -  \frac{d}{dx}(sec \theta) \\  =  - sec \theta tan \theta \frac{d \theta}{dx} \\  =  \frac{  sec \theta tan \theta}{  6a{cos}^{2} \theta sin \theta }  \\  \\\\ \\ \left. \dfrac{ {d}^{2} y }{d {x}^{2} } \right]_{ \theta =  \frac{\pi}{6} } =\frac{  sec  \frac{\pi}{6} tan  \frac{\pi}{6} }{ 6a{cos}^{2}  \frac{\pi}{6}  sin  \frac{\pi}{6}  }     \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =    \frac{ \frac{2}{ \sqrt{3}  }  \times  \frac{  \sqrt{3}  }{ 3 } }{6a \times  \frac{ 3 }{4}  \times  \frac{1}{2} }   \\  =  \frac{ \frac{2}{3} }{ \frac{9a}{4} }  \\  =  \frac{2}{3}  \times  \frac{4}{9a}  \\  =  \frac{8}{27a}

Similar questions