find d²y/dx² if x=sin theta and y=sin³theta at theta=π/2
Answers
Answered by
9
EXPLANATION.
⇒ x = sinθ. - - - - - (1).
⇒ y = sin³θ. - - - - - (2).
at x = π/2.
As we know that,
From equation (1), we get.
⇒ dx/dθ = d(sinθ)/dθ.
⇒ dx/dθ = cosθ. - - - - - (a).
From equation (2), we get.
⇒ y = sin³θ.
⇒ dy/dθ = 3sin²θ.(cosθ). - - - - - (b).
⇒ dy/dx = dy/dθ/dx/dθ.
⇒ dy/dx = 3sin²θ.(cosθ)/cosθ.
⇒ dy/dx = 3sin²θ.
Again differentiate the function, we get.
⇒ d²y/dx² = 3sin²θ.
⇒ d²y/dx² = 6sinθ.cosθ/cosθ.
⇒ d²y/dx² = 6sinθ.
⇒ (d²y/dx²) at θ = π/2.
Put the value of θ = π/2 in the equation, we get.
⇒ d²y/dx² = 6sin(π/2).
⇒ d²y/dx² = 6.
MORE INFORMATION.
(1) = d(sin x)/dx = cos x.
(2) = d(cos x)/dx = - sin x.
(3) = d(tan x)/dx = sec²x.
(4) = d(cot x)/dx = - cosec²x.
(5) = d(sec x)/dx = sec x tan x.
(6) = d(cosec x)/dx = - cosec x cot x.
Answered by
8
Step-by-step explanation:
Similar questions