Math, asked by rojahdrojahd, 27 days ago

find d²y/dx² if y=e*6x cos3x​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  {e}^{6x} . \cos(3x)  \\

Differentiating both sides w.r.t x, we get,

 \frac{dy}{dx} = 6 {e}^{6x} . \cos(3x) - 3 {e}^{6x}  \sin(3x)   \\

  \implies\frac{dy}{dx} = 3 {e}^{6x}  \{2 \cos(3x) -  \sin(3x)  \}  \\

Again, differentiating both sides w.r.t x, we get,

  \implies\frac{d^{2} y}{dx^{2} } = 3.6. {e}^{6x}  \{2 \cos(3x) -  \sin(3x)  \}  +3{e}^{6x}  \{ - 6 \sin(3x) -  3\cos(3x)  \} \\

  \implies\frac{d^{2} y}{dx^{2} } =18 {e}^{6x}  \{2 \cos(3x) -  \sin(3x)  \}   - 9{e}^{6x}  \{ 2 \sin(3x)  + \cos(3x)  \} \\

  \implies\frac{d^{2} y}{dx^{2} } =36{e}^{6x}  \cos(3x) - 18 {e}^{6x}  \sin(3x)    - 18{e}^{6x}  \sin(3x)   - 9 {e}^{6x} \cos(3x)   \\

  \implies\frac{d^{2} y}{dx^{2} } =(36{e}^{6x}  - 9 {e}^{6x}  )\cos(3x) - 36 {e}^{6x}  \sin(3x)        \\

  \implies\frac{d^{2} y}{dx^{2} } =27{e}^{6x} \cos(3x) - 36 {e}^{6x}  \sin(3x)        \\

  \implies\frac{d^{2} y}{dx^{2} } =9{e}^{6x} \{3 \cos(3x) - 4  \sin(3x)    \}     \\

Similar questions