Math, asked by amitj14, 4 months ago

Find definite integral of :
 \int \limits_{  - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(sin \: x + cos \: x)  \\

Answers

Answered by BrainlyConqueror0901
50

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{I =  - \frac{\pi}{4} (ln \: 2)}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{\bold{Given :}}} \\  \tt:  \implies \int \limits_{ - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(sin \: x + cos \: x)dx \\  \\ \red{\underline{\bold{To \: Find:}}} \\  \tt:  \implies \int \limits_{ - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(sin \: x + cos \: x)dx =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies  \int \limits_{ - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(sin \: x + cos \: x)dx = I -----(1)\\  \\   \green{\to} \tt  \: sin \: x + cos \: x =   \sqrt{2} \bigg( \frac{1}{ \sqrt{2} }  sin \: x +  \frac{1}{ \sqrt{2} } cos \: x) \\  \\ \green{\to} \tt  \: sin \: x + cos \: x = \sqrt{2}  \bigg(cos \:  \frac{\pi}{4}  \times  sin \: x +  sin \: \frac{\pi}{4}  \times cos \: x\bigg)\\\\ \green{\star}\tt\:sin(A+B)=(sin\:A\:cos\:A+cos\:A\:sin\:B )\\  \\ \green{\to} \tt  \: sin \: x + cos \: x = \sqrt{2}  \bigg(sin \bigg(x +  \frac{\pi}{4}  \bigg) \bigg)-----(2)\\\\ \text{Putting\:value\:of\:(2)\:in\:(1)} \\  \\ \tt:  \implies I=  \int \limits_{  - \frac{\pi}{4} }^{  \frac{\pi}{4}  } ln \:  \sqrt{2}  \: sin \bigg(x +  \frac{\pi}{4} \bigg )dx \\  \\ \begin{cases} \green{\circ} \tt  \:  x +  \frac{\pi}{4}  = \theta \implies dx =d \theta \\  \\  \green{\circ} \tt  \:x =   -  \frac{\pi}{4}  \implies   \theta = 0 \\  \\ \green{\circ} \tt  \:x =  \frac{\pi}{4}  \implies  \theta =  \frac{\pi}{2} \end{cases}

  \tt : \implies I=  \int \limits_{0}^{  \frac{\pi}{2}  }  ln  (\sqrt{2} sin  \:  \theta)d \theta\\  \\  \tt : \implies I= \int \limits_{0}^{  \frac{\pi}{2}  }( ln \sqrt{2} )d \theta +  \int \limits_{0}^{  \frac{\pi}{2}  } \:ln( sin \:  \theta) \: d \theta  \\  \\   \green{ \circ } \tt  \: \int \limits_{0}^{ \frac{\pi}{2}  } ln(sin \:  \theta)d \theta =  -  \frac{\pi}{2}  (ln  \: 2)\\  \\  \tt : \implies I= ln( \sqrt{2}) \int \limits_{0}^{  \frac{\pi}{2}  }d \theta   -  \frac{\pi}{2} (ln \: 2) \\  \\ \tt : \implies I= ln( \sqrt{2}) \bigg[\theta \bigg]_{0}^{ \frac{\pi}{2} }  -  \frac{\pi}{2} (ln \: 2) \\  \\ \tt : \implies I= ln( 2^{ \frac{1}{2} }  ) \bigg( \frac{\pi}{2}  - 0 \bigg) -  \frac{\pi}{2} (ln \: 2) \\  \\ \tt : \implies I=  \frac{1}{2} ln(2) \frac{\pi}{2}  -  \frac{\pi}{2} (ln \: 2) \\  \\ \\  \green{\tt : \implies I =  - \frac{\pi}{4} (ln \: 2)}

Answered by Anonymous
58

{\bold{\underline{\underline{Answer:}}}}

{\tt{\therefore{I =  - \frac{\pi}{4} (ln \: 2)}}}\\

 \sf{Given :}  \\  \sf \implies\int \limits_{ - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(sin \: x + cos \: x)dx \\  \\  \sf{To \: Find : } \\ \sf \implies Value \: of \: \int \limits_{ - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(sin \: x + cos \: x)dx =?

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

   \sf\implies Let\:I=  \int \limits_{ - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(sin \: x + cos \: x)dx\\  \\   \sf\implies  I=  \int \limits_{ - \frac{\pi}{4} }^{ \frac{ \pi}{4} } \: ln(\sqrt{2} \bigg( \frac{1}{ \sqrt{2} }  sin \: x +  \frac{1}{ \sqrt{2} } cos \: x) \\  \\ \sf  \implies I=  \int \limits_{  - \frac{\pi}{4} }^{  \frac{\pi}{4}  } ln \:  \sqrt{2}  \: sin \bigg(x +  \frac{\pi}{4} \bigg )dx \\  \\  \sf \: Replace\: x +  \frac{\pi}{4}  = t \implies dx+0 =dt \\  \\  \sf  \:x =   -  \frac{\pi}{4},  so\:t = 0 \\  \\  \sf  \:x =  \frac{\pi}{4}, so\:  t=  \frac{\pi}{2}

  \sf \implies I=  \int \limits_{0}^{  \frac{\pi}{2}  }  ln  (\sqrt{2} sin  \: t)dt\\  \\  \sf\implies I= ln(2^{\frac{1}{2}})\int \limits_{0}^{  \frac{\pi}{2}  }dt +  \int \limits_{0}^{  \frac{\pi}{2}  } \:ln( sin \:  t) \: dt  \\  \\   \sf  \: \int \limits_{0}^{ \frac{\pi}{2}  } ln(sin \: t)dt =  -  \frac{\pi}{2}  (ln  \: 2)\\  \\  \sf \implies I= \frac{1}{2}ln( 2) \bigg[t \bigg]_{0}^{ \frac{\pi}{2} }  -  \frac{\pi}{2} (ln \: 2) \\  \\  \sf\implies I=  \frac{1}{2} ln(2) \frac{\pi}{2}  -  \frac{\pi}{2} (ln \: 2) \\  \\ \\  \sf \implies I =  - \frac{\pi}{4} (ln \: 2)

Similar questions