find delta (x+cos x)?
Answers
Answered by
1
Answer:
ʏᴏᴜ ᴄᴀɴ ᴅᴇʀɪᴠᴇ ᴛʜᴇ ᴅᴇʀɪᴠᴀᴛɪᴠᴇ ᴏғ sɪɴ(x)
ʟᴇᴛ ʏ = sɪɴ(x)
ʏ + ᴅᴇʟᴛᴀ ʏ = sɪɴ(x + ᴅᴇʟᴛᴀ x)
sɪɴ(x + ᴅᴇʟᴛᴀ x)
= sɪɴx*ᴄᴏs(ᴅᴇʟᴛᴀ x) + ᴄᴏsx*sɪɴ(ᴅᴇʟᴛᴀ x)
(ᴅᴇʟᴛᴀ ʏ)/(ᴅᴇʟᴛᴀ x) = sɪɴ(x+ᴅᴇʟᴛᴀ x) - sɪɴ(x)
(ᴅᴇʟᴛᴀ ʏ) =sɪɴx*ᴄᴏs(ᴅᴇʟᴛᴀ x) + ᴄᴏsx*sɪɴ(ᴅᴇʟᴛᴀ x) - sɪɴx
ᴀs ᴅᴇʟᴛᴀ x ᴀᴘᴘʀᴏᴀᴄʜᴇs ᴢᴇʀᴏ, ᴅᴇʟᴛᴀ ʏ = ᴄᴏsx*ᴅᴇʟᴛᴀ x, (ᴅᴇʟᴛᴀ ʏ)/(ᴅᴇʟᴛᴀ x) = ᴅʏ/ᴅx
(ᴅᴇʟᴛᴀ ʏ)/(ᴅᴇʟᴛᴀ x) = ᴅʏ/ᴅx= ᴄᴏsx*ᴅᴇʟᴛᴀ x/ᴅᴇʟᴛᴀ x = ᴄᴏsx
Answered by
1
Answer:
Use the formula, d/dx(u*v) = u* d/dx(v) + v* d/dx(u)
d/dx(x*cosx)
= x* d/dx(cosx) + cosx* d/dx(x)
=x*(-sinx) + coSX * 1
= -x.sinx + COSX
Similar questions