Math, asked by Anonymous, 3 months ago

find derivate with respect to x ​

Attachments:

Answers

Answered by richapariya121pe22ey
0

Step-by-step explanation:

 y =  { \sin }^{2}x -  { \cos}^{2}x \\   \frac{dy}{dx}  =  \frac{d}{dx} ({ \sin }^{2}x -  { \cos}^{2}x) \\  =  \frac{d}{dx} ({ \sin }^{2}x) - \frac{d}{dx}  ( { \cos}^{2}x) \\  =  \frac{d}{dx}  { (\sin \: x)}^{2}  - \frac{d}{dx}  { (\cos \: x)}^{2} \\  = 2 \sin\: x \times  \frac{d}{dx} ( \sin \: x)  - 2 \cos\: x \times  \frac{d}{dx} ( \cos \: x)   \\  =( 2 \sin \: x \times  \cos \: x) - (2 \cos \: x \times ( -  \sin \: x)) \\  = 2 \sin \: x  \cos \: x + 2 \sin \: x \cos \: x \\  = 4 \sin \: x  \cos \: x

Similar questions