Math, asked by bhavin56, 11 months ago

find derivative by using multiplying by log method.​

Attachments:

Answers

Answered by Sharad001
43

Question :-

Find the derivative by using log .

 \to \bf y = x +  \frac{1}{x +  \frac{1}{x +  \frac{1}{x + } ....} }  \\

Answer :-

\boxed{ \to \bf  \red{ \frac{dy}{dx}  = } \green{ \frac{y}{xy + 2} }} \:

Step - by - step explanation :-

We have ,

\leadsto \bf y \red{ = x +  }\frac{1}{x +  \green{ \frac{1}{x +  \frac{1}{x + }} ....} }  \:  \\  \\  \:  \mathfrak{ \blue{we \: can \: wite \: it \: }} \\  \\  \to  \bf y = x +  \frac{1}{y } \\   \bf \purple{ taking \:  \log \: on \: both \: sides }\:  \\  \\  \to \bf \: log(y)  = \blue{  log \bigg(x +  \frac{1}{y}  \bigg)  }\\  \\   \sf now \: differentiate \: with \: respect \: to \:  \bf{x }\\  \\  \to \bf  \orange{\frac{1}{y} }\red{ \frac{dy}{dx}  } =  \red{ \frac{1}{x +  \frac{1}{y} } } \green{ \frac{d}{dx}  \bigg(x +  \frac{1}{y}  \bigg)} \\  \\  \to \bf \red{\frac{1}{y} }\green{ \frac{dy}{dx}  } = \:  \frac{1}{ \frac{xy + 1}{y} }  \bigg(1   \blue{- \frac{1}{ {y}^{2} }  \frac{dy}{dx}  \bigg)} \\  \\  \to \bf \orange{\frac{1}{y} }\red{ \frac{dy}{dx}  } = \frac{y}{xy + 1}  -  \bigg(  \red{\frac{y}{xy + 1}  }\bigg) \bigg( \green{ \frac{1}{ {y}^{2} }  \frac{dy}{dx} } \bigg) \\  \\  \to \bf  \red{\frac{1}{y}  } \pink{\frac{dy}{dx} } =  \frac{y}{xy + 1} \blue{  -  \frac{1}{y(xy + 1)}}  \frac{dy}{dx}  \\  \\  \to  \bf \red{ \frac{1}{y} } \frac{dy}{dx}  \green{ +  \frac{1}{y(xy + 1)} } \frac{dy}{dx} = \purple{  \frac{y}{xy + 1}  }\\  \\  \to  \bf \frac{dy}{dx}  \bigg( \pink{ \frac{1}{y} } +  \orange{ \frac{1}{y(xy + 1)} } \bigg) =  \blue{ \frac{1}{xy + 1}  }\\  \\  \to  \bf \frac{dy}{dx}  \bigg( \green{ \frac{xy + 1 + 1}{y(xy + 1)}}  \bigg) =   \pink{\frac{1}{xy + 1} } \\  \\  \boxed{ \to \bf  \red{ \frac{dy}{dx}  = } \green{ \frac{y}{xy + 2} }}

Similar questions