Find derivative of cot square root x by first principle
Answers
Answered by
6
- [cosec^2 (√x)] / 2√x
- d (cot√x)/dx = lim h→0 [cot√(x+h) - cot√x] / h
- = lim h→0 [ { 1/tan(√x+h) - 1/tan(√x) } ] / h
which is an indeterminate form of type 0/0
so, we apply L'Hospital's rule,
- lim h→0 [ { 1/tan(√x+h) - 1/tan(√x) } ] / h
- = lim h→0 d/dh [ { 1/tan(√x+h) - 1/tan(√x) } ] / (dh/dh)
- = lim h→0 (d/dh) { 1/tan(√x+h) - 1/tan(√x) }
- = -1 / { 2sin√(h+x)^2 * √(x+h) }
thus,
- lim h→0 [ { 1/tan(√x+h) - 1/tan(√x) } ] / h
- = lim h→0 [-1 / { 2sin√(h+x)^2 * √(x+h) } ]
- = -1/2 lim h→0 [ 1 / { sin√(h+x)^2 * √(x+h) } ]
- = -1 / 2 [ √{lim h→0(h+x) } { lim h→0 sin (h+x)^2 } ]
- = -1 / 2√x sin [ √{lim h→0(h+x)^2 } ]
- = - [cosec^2 (√x)] / 2√x
Similar questions