find derivative of sec(cot(x^3-x+2))
Answers
Step-by-step explanation:
By using the quotient rule and trigonometric identities, we can obtain the following derivatives:
\displaystyle\frac{{{d}{\left( \csc{{x}}\right)}}}{{{\left.{d}{x}\right.}}}=- \csc{{x}} \cot{{x}}
dx
d(cscx)
=−cscxcotx
\displaystyle\frac{{{d}{\left( \sec{{x}}\right)}}}{{{\left.{d}{x}\right.}}}= \sec{{x}} \tan{{x}}
dx
d(secx)
=secxtanx
\displaystyle\frac{{{d}{\left( \cot{{x}}\right)}}}{{{\left.{d}{x}\right.}}}=-{{\csc}^{2}{x}}
dx
d(cotx)
=−csc
2
x
In words, we would say:
The derivative of \displaystyle \csc{{x}}cscx is \displaystyle- \csc{{x}} \cot{{x}}−cscxcotx,
The derivative of \displaystyle \sec{{x}}secx is \displaystyle \sec{{x}} \tan{{x}}secxtanx and
The derivative of \displaystyle \cot{{x}}cotx is \displaystyle-{{\csc}^{2}{x}}−csc
2
x.