Math, asked by Tanya107, 1 year ago

find derivative of tan (root x) using first principle

Answers

Answered by suriyank
7
here is your answer.

tan x is sec square x
root x is 1/2 root x

sec square /2 root x

I can't draw root ,square. so understand it.
hope this will help you

Tanya107: but i need the answer by first principle
Answered by Anonymous
3

The derivative of  f(x) = tan\sqrt{x} is given by

f'(x) = \frac{1}{2\sqrt{x} } sec^{2}\sqrt{x}

  • Solving by 1st principle of derivative, we have

         f'(x) =  \lim_{h \to x\1} \frac{f(h)-f(x)}{h-x}

         f'(x) =  \lim_{h \to x\1} \frac{tan\sqrt{h} -tan\sqrt{x} }{h-x}

   Multiplying and dividing the above equation by 1+tan\sqrt{h} tan\sqrt{x} , we get

         f'(x) =  \lim_{h \to x\1} \frac{tan\sqrt{h} -tan\sqrt{x} }{1 + tan\sqrt{h}tan\sqrt{x}  }  (\frac{1+tan\sqrt{h}tan\sqrt{x}  }{h-x})

  • Now, Using the identity

         tan (A-B) = \frac{tanA - tanB}{1 + tanAtanB}

      we get,

         f'(x) =  \lim_{h \to x\1}   tan(\sqrt{h}-\sqrt{x}  )  (\frac{1+tan\sqrt{h}tan\sqrt{x}  }{h-x})

         f'(x) =  \lim_{h \to x\1} \frac{tan(\sqrt{h} -\sqrt{x}) }{ h-x }   \lim_{h \to x\1} 1+tan\sqrt{h}tan\sqrt{x}

         f'(x) =  \lim_{h \to x\1} \frac{tan(\sqrt{h} -\sqrt{x}) }{( \sqrt{h}-\sqrt{x}) (\sqrt{h}+\sqrt{x}  )  }   ( 1+tan\sqrt{x}tan\sqrt{x})

  • Now, using the standard limits for tanx that is,

         \lim_{x \to 0\1} \frac{tanx}{x} = 1

         we get,

        f'(x) = \frac{1 + tan^{2}\sqrt{x}  }{\sqrt{x}+\sqrt{x}  }  \lim_{h \to x\1} \frac{tan(\sqrt{h} -\sqrt{x} )}{( \sqrt{h}-\sqrt{x})   }

          f'(x) = \frac{1 + tan^{2}\sqrt{x}  }{2\sqrt{x}  }  (1)

  • Now, using identity

          1 +tan^{2}x = sec^{2}x, we get

          f'(x) = \frac{sec^{2}\sqrt{x}  }{2\sqrt{x}  }

   hence the derivative of f(x) by 1st principle is

               f'(x) = \frac{sec^{2}\sqrt{x}  }{2\sqrt{x}  }

       

Similar questions