Math, asked by mkd5842, 1 month ago

Find derivative of {tan}^{ - 1}  \frac{x}{ \sqrt{ {a}^{2} } - \sqrt{ {x}^{2}}} Differentiate with respect to \sf x.​

Answers

Answered by IIMrLegendII
14

QUESTION :-

Find derivative of  \sf \fbox \red{{tan}^{ - 1}  \frac{x}{ \sqrt{ {a}^{2} } - \sqrt{ {x}^{2}}}} Differentiate with respect to \sf x.

SOLUTION :-

Let,

 \sf \fbox \orange{y = {tan}^{ - 1}  \frac{x}{ \sqrt{ {a}^{2} } - \sqrt{ {x}^{2}}}}

 \sf \fbox \orange{x = a \: sin  \: \theta}

Here,

 \sf \theta = {sin}^{ - 1} \frac{x}{a} ---------❶

Now,

 \sf y =  {tan}^{ - 1}  \frac{a \: sin  \: \theta}{ \sqrt{ {a}^{2} -  {a}^{2} {sin}^{2} \theta}}

On reducing it becomes,

 \sf {tan}^{ - 1} \frac{a \: sin  \: \theta}{ \sqrt{ {a}^{2} {cos}^{2} \theta} }

 \sf {tan}^{ - 1}  \frac{a \: sin \: \theta}{a \: cos \:  \theta}

 \sf  {tan}^{ - 1}tan \: \theta \: {\therefore \:  \frac{sin \: \theta}{cos \:  \theta} = tan \: \theta}

Now it becomes,

 \sf y =  \theta

 \sf y =  \theta = {sin}^{ - 1} \frac{x}{a} by ---------❶

Differentiate with respect to \sf x

  \sf \frac{d}{dx}y =  \frac{d}{dx} {sin}^{ - 1} \frac{x}{a}

 \sf  \frac{1}{a} \times  \frac{1}{ \sqrt{1 -  \frac{ {x}^{2} }{ {a}^{2} } } }

 \sf  \frac{1}{a} \times  \frac{a}{ \sqrt{ {a}^{2} -  {x}^{2}}} = \frac{1}{ \sqrt{ {a}^{2} -  {x}^{2}}}

Hence,

 \sf \fbox \green{\frac{d}{dx} {tan}^{ - 1} \frac{x}{ \sqrt{ {a}^{2} -  {x}^{2}}} =  \frac{1}{ \sqrt{ {a}^{2} -  {x}^{2}}}}

Hence Proved.

Hope it helps ✌

\fbox \orange{ \sf @llMrLegendll}

\fbox \green{ \sf Thank You!!!}

Similar questions