Math, asked by abhinavkr01, 6 hours ago

find derivative of
y = 2^{sin \: x}  \:  +  \: sin \: (ln \: x)
by chain rule.​

Answers

Answered by sarishti13052
1

Answer:

ans 2

Step-by-step explanation:

find derivative of

y = 2^{sin \: x} \: + \: sin \: (ln \: x)y=2

sinx

+sin(lnx)

by chain rule.

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {2}^{sinx} + sin(logx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}\bigg[{2}^{sinx} + sin(logx)\bigg]

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{d}{dx} {2}^{sinx} + \dfrac{d}{dx}sin(logx)

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx} {a}^{x} =  {a}^{x}loga}}

and

 \boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {2}^{sinx} \: \dfrac{d}{dx}sinx +cos(logx)\dfrac{d}{dx}logx

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {2}^{sinx} \: cosx +cos(logx) \times \dfrac{1}{x}

\bf :\longmapsto\:\dfrac{dy}{dx} = cosx \:  {2}^{sinx}  \:  +  \: \dfrac{cos(logx)}{x}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions