Math, asked by abhinavkr01, 2 months ago

Find derivative of
y =  log_{2 }  \: ( log_{2} \: x)
by chain rule.​

Answers

Answered by harshb77
1

Step-by-step explanation:

y =  log_{2}( log_{2}(x) )  \\  =  log_{2}( \frac{ log_{e}(x) }{ log_{e}(2) } )  \\  =  log_{2}( log_{e}(x) )  -  log_{2}( log_{e}(2) )  \\  =  \frac{ log_{e}(  log_{e}(x)  ) }{ log_{e}(2) }  -  \frac{ log_{e}( log_{e}(2) ) }{ log_{e}(2) }  \\  =  \frac{1}{ log_{e}(2) }  \frac{d  \:  \: log_{e}( log_{e}(x) ) }{dx}  - 0 \\  =  \frac{1}{ log_{e}(2) }  \frac{1}{ log_{e}(x)  \times x}  - 0

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\red{\rm :\longmapsto\:y =  log_{2}( log_{2}(x) )}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} log_{2}( log_{2}(x) )

We know,

 \boxed{ \bf{ \: \dfrac{d}{dx} log_{a}(x) =  \frac{1}{x \: loga} }}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ log_{2}(x)log2 }\dfrac{d}{dx} log_{2}(x)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ log_{2}(x)log2 } \times \dfrac{1}{x \: log2}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{1}{ {(log2)}^{2} \:  log_{2}(x) \: x}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions