Math, asked by shruthi9204, 9 months ago

Find derivative of x+1/x whole cube

Answers

Answered by smitamahapatra2090
0

Answer:

\frac{d}{dx}(x³ + x⁻³ + 3x + 3x⁻¹) = 3x² - 3x⁻⁴ + 3 - 3x⁻²

Step-by-step explanation:

(x + \frac{1}{x})³ = x³ + 1/x³ + 3(x + 1/x)

           = x³ + x⁻³ + 3x + 3x⁻¹

\frac{d}{dx}(x³ + x⁻³ + 3x + 3x⁻¹)

= \frac{d}{dx}(x^{3}) + \frac{d}{dx}(x^{-3}) + \frac{d}{dx}(3x) + \frac{d}{dx}(3x^{-1})

= 3x^{3-1} + (-3)(x^{-3-1}) + 3(1) + 3(-1)(x^{-1-1})

= 3x² - 3x⁻⁴ + 3 - 3x⁻²

Similar questions