Math, asked by giripradath20, 1 year ago

find derivative of x+1/x whole cube

Attachments:

TanishaDM: Using binomial theorem?

Answers

Answered by geeshankhan
36
x³+1/x³+3(x+1/x)
hope it will help you

giripradath20: hey
geeshankhan: hii
geeshankhan: hello
giripradath20: we ,must use a+b whole cube formula
geeshankhan: yes
giripradath20: but you don't do that
geeshankhan: ofcoarse i will use that one
geeshankhan: in short way
geeshankhan: 3×x×1/x than x and x will cancelled than 3 remain
Answered by aquialaska
31

Answer:

Derivative of (x+\frac{1}{x})^3 is 3x^2-\frac{3}{x^4}+3-\frac{3}{x^2}

Step-by-step explanation:

Given: (x+\frac{1}{x})^3

To find: Derivative w.r.t x of given function

First we simply the expression using identity,

(a+b)³ = a³ + b³ + 3a²b + 3ab²

(x+\frac{1}{x})^3=x^3+(\frac{1}{x})^3+3\times x^2\times\frac{1}{x}+3\times x\times(\frac{1}{x})^2

(x+\frac{1}{x})^3=x^3+\frac{1}{x^3}+3x+\frac{3}{x}

Now,

\frac{\mathrm{d}(x^3+\frac{1}{x^3}+3x+\frac{3}{x})}{\mathrm{d} x}

=\frac{\mathrm{d}(x^3)}{\mathrm{d} x}+\frac{\mathrm{d} (\frac{1}{x^3})}{\mathrm{d} x}+\frac{\mathrm{d} (3x)}{\mathrm{d} x}+\frac{\mathrm{d} (\frac{3}{x})}{\mathrm{d} x}

=3x^2-3x^{-4}+3-3x^{-2}

=3x^2-3\frac{1}{x^4}+3-3\frac{1}{x^2}

=3x^2-\frac{3}{x^4}+3-\frac{3}{x^2}

Therefore, Derivative of (x+\frac{1}{x})^3 is 3x^2-\frac{3}{x^4}+3-\frac{3}{x^2}

Similar questions