Find derivative of (x^2+1)(2cosx+3sinx) with respect to x
Answers
Answered by
8
Answer:
( 2 x ) ( 2 cos x + 3 sin x ) + ( x² + 1 ) ( 3 cos x - 2 sin x )
Step-by-step explanation:
Given :
f ( x ) = ( x² + 1 ) ( 2 cos x + 3 sin x )
We know :
( sin x )' = cos x
( cos x )' = sin x
Diff. w.r.t x :
f' ( x ) = ( 2 cos x + 3 sin x ) ( x² + 1 )' + ( x² + 1 ) ( 2 cos x + 3 sin x )'
f' ( x ) = ( 2 cos x + 3 sin x ) ( 2 x + 0 ) + ( x² + 1 ) ( - 2 sin x + 3 cos x )
f' ( x ) = ( 2 cos x + 3 sin x ) ( 2 x ) + ( x² + 1 ) ( - 2 sin x + 3 cos x )
f' ( x ) = ( 2 x ) ( 2 cos x + 3 sin x ) + ( x² + 1 ) ( 3 cos x - 2 sin x )
Hence we get required answer!
Similar questions
Social Sciences,
4 months ago
English,
4 months ago
English,
9 months ago
Accountancy,
1 year ago
Accountancy,
1 year ago
Accountancy,
1 year ago