Math, asked by joshipurab602, 2 days ago

Find derivative of x sec x by first principle​

Answers

Answered by 31aliahmedzahidshaik
1

Answer:

Let f(x)=secx

f(x+h)=sec(x+h)

f

1

(x)=

h→0

lim

h

f(x+h)−f(x)

=

h→0

lim

h

sec(x+h)−secx

=

h→0

lim

h

cos(s+h)

1

cosx

1

=

h→0

lim

cos(x+h)cosxh

cosx−cos(x+h)

=

h→0

lim

cos(x+h)cosxh

−2sin[

2

2x+h

]sin[

2

−h

]

=

h→0

lim

cos(x+h)cosxh

2sin[

2

2x+h

]sin

2

h

[sin(−θ=−sinθ)]

=

h→0

lim

2

2

h

2sin

2

h

×

h→0

lim

cos(x+h)cosx

h→0

lim

sin

2

(2x+h)

=1×

cos(x+0)cosx

sin(

2

2x+0

)

=

cosxcosx

sinx

=tanxsecx

Step-by-step explanation:

Please mark brainliest

Similar questions