Math, asked by jotsanad, 2 months ago

find derivative of y=log e^x/x

Answers

Answered by AllenGPhilip
0

Step-by-step explanation:

here the answer any doubt ask

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

➢ Given that

\rm :\longmapsto\:y = \dfrac{log{e}^{x}}{x}

We know that

\underbrace{\boxed{\sf{log{e}^{x} = x}}}

So, using this we get

\rm :\longmapsto\:y = \dfrac{x}{x}

\rm :\longmapsto\:y = 1

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} 1

We know that

\underbrace{\boxed{\bf{ \dfrac{d}{dx}k = 0}}}

So, using this

\bf :\longmapsto\:\dfrac{dy}{dx} = 0

Hence,

\bf :\longmapsto\:\dfrac{d}{dx} \: \dfrac{log{e}^{x}}{x}  = 0

Additional Information :-

Let take one more example!!

Question :- Differentiate the following :-

\rm :\longmapsto\:y = {e}^{ log(x +  \sqrt{ {x}^{2}  + 1} )}

Solution :-

\rm :\longmapsto\:y = {e}^{ log(x +  \sqrt{ {x}^{2}  + 1} )}

We know that

\underbrace{\boxed{\sf{{e}^{logx} = x}}}

So, using this

\rm :\longmapsto\:y = x +  \sqrt{ {x}^{2}  + 1}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}(x +  \sqrt{ {x}^{2}  + 1} )

\rm :\longmapsto\:\dfrac{dy}{dx}= \dfrac{d}{dx}x +  \dfrac{d}{dx}\sqrt{ {x}^{2}  + 1}

We know,

\underbrace{\boxed{\bf{ \dfrac{d}{dx}x = 1}}}

and

\underbrace{\boxed{\bf{ \dfrac{d}{dx} \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{1}{2 \sqrt{ {x}^{2} + 1 } }\dfrac{d}{dx}( {x}^{2} + 1)

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{1}{2 \sqrt{ {x}^{2} + 1 } }(2x)

\rm :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{1}{\sqrt{ {x}^{2} + 1 } }(x)

\bf :\longmapsto\:\dfrac{dy}{dx} = 1 + \dfrac{x}{\sqrt{ {x}^{2} + 1 } }

Similar questions