Math, asked by Diliptalapda, 7 hours ago

find derivative :
 \mathtt \red{\left|\begin{array}{ccc}0 & 1 &s ec \theta \\ \tan \theta & -\sec \theta & \tan \theta \\ 1 & 0 & 1\end{array}\right|}
Answer with proper explanation.

Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given determinant is

\rm :\longmapsto\:\left|\begin{array}{ccc}0 & 1 &s ec \theta \\ \tan \theta & -\sec \theta & \tan \theta \\ 1 & 0 & 1\end{array}\right|

Let assume that

\rm :\longmapsto\:y = \left|\begin{array}{ccc}0 & 1 &s ec \theta \\ \tan \theta & -\sec \theta & \tan \theta \\ 1 & 0 & 1\end{array}\right|

\red{\rm :\longmapsto\:\boxed{\tt{ OP \: C_3 \:  \to \: C_3 - C_1 \: }}}

We get

\rm :\longmapsto\:y = \left|\begin{array}{ccc}0 & 1 &sec \theta  - 0\\ \tan \theta & -\sec \theta & \tan \theta  - tan \theta\\ 1 & 0 & 1 - 1\end{array}\right|

\rm :\longmapsto\:y = \left|\begin{array}{ccc}0 & 1 &s ec \theta \\ \tan \theta & -\sec \theta & 0 \\ 1 & 0 & 0\end{array}\right|

Now, expanding along third column, we get

\rm :\longmapsto\:y = sec \theta\bigg[0 - ( - sec \theta)\bigg]

\rm :\longmapsto\:y = sec^{2} \theta

On differentiating both sides, we get

\rm :\longmapsto\:\dfrac{d}{d \theta}y = \dfrac{d}{d \theta}sec^{2} \theta

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{d \theta} = 2sec \theta \: \dfrac{d}{d \theta}sec \theta

\rm :\longmapsto\:\dfrac{dy}{d \theta} = 2sec \theta \: (sec \theta \: tan \theta)

\rm :\longmapsto\:\dfrac{dy}{d \theta} = 2sec^{2}  \theta \: tan \theta

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

1. The determinant value remains unaltered if rows and columns are interchanged.

2. The determinant value is 0, if two rows or columns are identical.

3. The determinant value is multiplied by - 1, if successive rows or columns are interchanged.

4. The determinant value remains unaltered if rows or columns are added or subtracted.

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions