Math, asked by gong44, 2 months ago

find derivative.
 \\  \\  \\  \\

Attachments:

Answers

Answered by Anonymous
43

\boxed{ \red{\bold{- \frac{ 2}{1 + {x}^{2} } }}}

◆In this question , first solve the Inverse Trigonometry,

by Let

\begin{gathered}x = tan \theta \\ or \: \\ \theta = {tan}^{ - 1} x\end{gathered}

●After solving , we get the value:-

\boxed{- 2 {tan}^{ - 1} x}

◆ And at last differentiate w.r.t X

Formula used:-

\star\boxed{ \bold{ \pink{cos \: 2 \theta = \frac{1 - {tan}^{2} \theta }{1 + {tan}^{2} \theta } }}}

\star \boxed{ \purple{\bold{ {cos}^{ - 1} (cosx) = x}}}

\star \: \boxed{ \pink{\bold{ \frac{d}{dx} ( {tan}^{ - 1} x) = \frac{1}{1 + {x}^{2} } }}}

Solution refer to the attachment

Attachments:
Answered by akanksha2614
0

Answer:

\boxed{ \red{\bold{- \frac{ 2}{1 + {x}^{2} } }}}

1+x

2

2

◆In this question , first solve the Inverse Trigonometry,

by Let

\begin{gathered}\begin{gathered}x = tan \theta \\ or \: \\ \theta = {tan}^{ - 1} x\end{gathered}\end{gathered}

x=tanθ

or

θ=tan

−1

x

●After solving , we get the value:-

\boxed{- 2 {tan}^{ - 1} x}

−2tan

−1

x

◆ And at last differentiate w.r.t X

Formula used:-

\star\boxed{ \bold{ \pink{cos \: 2 \theta = \frac{1 - {tan}^{2} \theta }{1 + {tan}^{2} \theta } }}}⋆

cos2θ=

1+tan

2

θ

1−tan

2

θ

\star \boxed{ \purple{\bold{ {cos}^{ - 1} (cosx) = x}}}⋆

cos

−1

(cosx)=x

\star \: \boxed{ \pink{\bold{ \frac{d}{dx} ( {tan}^{ - 1} x) = \frac{1}{1 + {x}^{2} } }}}⋆

dx

d

(tan

−1

x)=

1+x

2

1

Solution refer to the attachment

Similar questions