find derivative.
Answers
◆In this question , first solve the Inverse Trigonometry,
by Let
●After solving , we get the value:-
◆ And at last differentiate w.r.t X
Formula used:-
Solution refer to the attachment
Answer:
\boxed{ \red{\bold{- \frac{ 2}{1 + {x}^{2} } }}}
−
1+x
2
2
◆In this question , first solve the Inverse Trigonometry,
by Let
\begin{gathered}\begin{gathered}x = tan \theta \\ or \: \\ \theta = {tan}^{ - 1} x\end{gathered}\end{gathered}
x=tanθ
or
θ=tan
−1
x
●After solving , we get the value:-
\boxed{- 2 {tan}^{ - 1} x}
−2tan
−1
x
◆ And at last differentiate w.r.t X
Formula used:-
\star\boxed{ \bold{ \pink{cos \: 2 \theta = \frac{1 - {tan}^{2} \theta }{1 + {tan}^{2} \theta } }}}⋆
cos2θ=
1+tan
2
θ
1−tan
2
θ
\star \boxed{ \purple{\bold{ {cos}^{ - 1} (cosx) = x}}}⋆
cos
−1
(cosx)=x
\star \: \boxed{ \pink{\bold{ \frac{d}{dx} ( {tan}^{ - 1} x) = \frac{1}{1 + {x}^{2} } }}}⋆
dx
d
(tan
−1
x)=
1+x
2
1
Solution refer to the attachment