Math, asked by aryan021212, 1 day ago

Find derivative using first principal

f(x) = x \: cosx

Answers

Answered by anushkanikam391
0

Answer:

hope it helps (plz mark me brilliant)

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = x \: cosx \\

So,

\rm \: f(x + h) = (x + h) \: cos(x + h) \\

By Definition of First Principal, we have

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h}  \\

So, on substituting the values, we get

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{(x + h)cos(x + h) - xcosx}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{xcos(x + h) + hcos(x + h) - xcosx}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{xcos(x + h) - xcosx}{h}  + \displaystyle\lim_{h \to 0}\rm  \frac{hcos(x + h)}{h}

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{x(cos(x + h) - cosx)}{h}  + \displaystyle\lim_{h \to 0}\rm  cos(x + h)  \\

\rm \:  =  \: x\displaystyle\lim_{h \to 0}\rm  \frac{cos(x + h) - cosx}{h}  + cosx  \\

We know,

\boxed{\sf{  \:cosx - cosy \:  =   \: - \:  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

So, on using this identity, we get

\rm \:  =  \: x\displaystyle\lim_{h \to 0}\rm  \frac{ - 2sin\bigg[\dfrac{x + h + x}{2} \bigg]sin\bigg[\dfrac{x + h - x}{2} \bigg]}{h}  + cosx \\

\rm \:  =  \: x\displaystyle\lim_{h \to 0}\rm  \frac{ - 2sin\bigg[\dfrac{2x + h }{2} \bigg]sin\bigg[\dfrac{h}{2} \bigg]}{h}  + cosx \\

\rm \:  =  \:   - 2x\times \displaystyle\lim_{h \to 0}\rm sin \frac{2x + h}{2} \times \displaystyle\lim_{h \to 0}\rm  \frac{sin \dfrac{h}{2} }{h}  + cosx \\

\rm \:  =  \:   - 2x \: sinx \times \displaystyle\lim_{h \to 0}\rm  \frac{sin \dfrac{h}{2} }{ \dfrac{h}{2}  \times 2}  + cosx \\

\rm \:  =  \:   - x \: sinx \times \displaystyle\lim_{h \to 0}\rm  \frac{sin \dfrac{h}{2} }{ \dfrac{h}{2}}  + cosx \\

We know,

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }} \\

So, using this result, we

\rm \:  =  \:  -  \: xsinx \times 1 + cosx \\

\rm \:  =  \:  -  \: xsinx + cosx \\

Hence,

\rm\implies \:\boxed{\rm{  \: \: \dfrac{d}{dx}(x \: cosx) =  - x \: sinx \:  +  \: cosx \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions