Math, asked by ashwin8105, 4 months ago

Find derivative using the principle.
Cosecx

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\longrightarrow \:  \tt \: \tt \:\lim_{y\to 0}\dfrac{siny}{y}  = 1

 \tt \: sinx - siny = 2sin\bigg( \dfrac{x - y}{2} \bigg)cos\bigg( \dfrac{x + y}{2} \bigg)

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \longrightarrow \: Let f(x) = cosecx \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt \longrightarrow \: Change x  \: to \: x \:  +  \: h \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \longrightarrow \:  \tt \: f(x + h) = cosec(x + h)

☆ Using definition of first principle

\longrightarrow \:  \tt \: f'(x) =  \tt \:\lim_{h\to 0}\dfrac{f(x + h) - f(x)}{h}

\longrightarrow \:  \tt \: f'(x) =  \tt \:\lim_{h\to 0}\dfrac{cosec(x + h) - cosecx}{h}

\longrightarrow \:  \tt \: f'(x) =  \tt \:\lim_{h\to 0}\dfrac{\dfrac{1 }{sin(x + h)} - \dfrac{1}{sinx}  }{h}

\longrightarrow \:  \tt \: f'(x) =  \tt \:\lim_{h\to 0}\dfrac{sinx - sin(x + h)}{sinx \: sin(x + h) \: h}

  \tt \: f'(x) =  \tt \ \: \: \dfrac{1}{ {sin}^{2}x } \lim_{h\to 0}\dfrac{2 \: sin\bigg(\dfrac{x - x - h}{2}  \bigg)cos\bigg( \dfrac{x + x + h}{2} \bigg)}{h}

\longrightarrow \:  \tt \: f'(x) =  \tt \:\dfrac{2cosx}{ {sin}^{2} x} \lim_{h\to 0}\dfrac{sin\bigg(\dfrac{ - h}{2}  \bigg)}{h}

\longrightarrow \:  \tt \: f'(x) =  \tt \:\dfrac{2cosx}{ {sin}^{2} x} \lim_{h\to 0}\dfrac{sin\bigg(\dfrac{ - h}{2}  \bigg)}{ - 2 \times \dfrac{ ( - h)}{2} }

\longrightarrow \:  \tt \: f'(x) =   - \dfrac{cosx}{ {sin}^{2}x }

\longrightarrow \:  \tt \: f'(x) =  - cosecx \: cotx

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions