Math, asked by pardeepsinghps1322, 4 months ago

Find df/dt at t = 0, where
f (x, y) = x cos y + e^x sin y, x = t^2 + 1, y = t^3 + t.​

Answers

Answered by suhail2070
0

Answer:

\frac{df}{dx}  = 1

Step-by-step explanation:

 \frac{df}{dx}  =  \frac{d(x \cos(y)  +  {e}^{x} )}{dx}   \\  \\  =  (\cos(y)   -  x \sin(y)  \frac{dy}{dx} ) \\  \\  \frac{dy}{dt}  = 1 + 3 {t}^{2}  \\  \\   \frac{dx}{dx}  =2 t \\  \\  \frac{dy}{dx}  =  \frac{1 + 3 {t}^{2} }{2t}  \\  \\  \frac{dy}{dx}  = (lim \ \:  \:  \: t\:  \:  \:  \: tends \: to \: 0) \:  \:  \:  \:  \:  \:  \frac{1 + 3 {t}^{2} }{2t}  =  \frac{6t}{2} (by \: l \: hospital \: rule) \\  \\  \frac{dy}{dx}  = 0 \\  \\  \\  \frac{df}{dx}  = (\cos(y)   -  x \sin(y)  \frac{dy}{dx} ) \\  \\ at \:  \: t \:  = 0 \:  \: y = 0 \\  \\ at \: t = 0 \:  \: x = 1 \\  \\  \\  \\  \frac{df}{dx}  = ( \cos(0)  - 1 \sin(0) (0)) \\  \\   \frac{df}{dx}  = 1

Similar questions