Math, asked by nernay27, 1 month ago

Find df/dx of given function f = f1.f2.f3


f1 = logex^4 # log with the base e

f2 = e^(2x-3)

f3 = x^(1/3) # cube root of x

Answers

Answered by nirman95
2

 \therefore \: f = f1 \times f2 \times f3

 \implies \: f =  log_{e}( {x}^{4} )  \times  {e}^{2x - 3}   \times  {x}^{ \frac{1}{3} }

 \implies \: f = 4 log_{e}(x)  \times  {e}^{2x - 3}   \times  {x}^{ \frac{1}{3} }

Taking log on both sides:

 \implies \: f =  log \bigg \{4  log_{e}(x)  \times  {e}^{2x - 3}   \times  {x}^{ \frac{1}{3} }  \bigg \}

 \implies \:  log(f)= 4  log \{ log_{e}(x) \}  +  log( {e}^{2x - 3})    +   log({x}^{ \frac{1}{3} })

 \implies \:  log(f)= 4  log \{ log_{e}(x) \}  +( 2x - 3)   +    \dfrac{1}{3} log(x)

 \implies \:   \dfrac{log(f)}{dx}= 4   \dfrac{d \: log \{ log_{e}(x) \}}{dx}  +   \dfrac{d \:(2x - 3)}{dx}    +     \dfrac{1}{3} \dfrac{d \: log(x)}{dx}

 \implies \:   \dfrac{1}{f} \times  \dfrac{df}{dx}  =  \dfrac{4}{x log(x) }   + 2   +    \dfrac{1}{3x}

 \implies \:   \dfrac{df}{dx}  =  \bigg \{ \dfrac{4}{x log(x) }   + 2   +    \dfrac{1}{3x}  \bigg \}f

 \implies \:   \dfrac{df}{dx}  =  \bigg \{ \dfrac{4}{x log(x) }   + 2   +    \dfrac{1}{3x}  \bigg \} \bigg \{log_{e}( {x}^{4} )  \times  {e}^{2x - 3}   \times  {x}^{ \frac{1}{3} } \bigg \}

So, final answer is:

  \boxed{ \bf\:   \dfrac{df}{dx}  =  \bigg \{ \dfrac{4}{x log(x) }   + 2   +    \dfrac{1}{3x}  \bigg \} \bigg \{log_{e}( {x}^{4} )  \times  {e}^{2x - 3}   \times  {x}^{ \frac{1}{3} } \bigg \}}

Similar questions