Math, asked by Prasansa823, 4 days ago

Find differential equation of the equation - x^2+y^2 = 2ax

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 {x}^{2}  +  {y}^{2}  = 2ax

  \implies2{x} +  2{y} \cdot \dfrac{dy}{dx}  = 2a

  \implies{x} +  {y} \cdot \dfrac{dy}{dx}  = a

Put this value in original equation,

 {x}^{2}  +  {y}^{2}  = 2x \cdot \left(x + y \dfrac{dy}{dx}  \right)

  \implies \: {x}^{2}  +  {y}^{2}  = 2x ^{2} +2x y \dfrac{dy}{dx}   \\

  \implies \:   {y}^{2}  = {x}^{2} +2x y \dfrac{dy}{dx}   \\

  \implies \:   2x y \dfrac{dy}{dx}  ={y}^{2}  -  {x}^{2}   \\

  \implies \:   \dfrac{dy}{dx}  = \dfrac{{y}^{2}  -  {x}^{2} }{2xy}  \\

Similar questions