Math, asked by yogit4079, 1 year ago

find diffrentiation of cos(x^2+bx+c)​

Answers

Answered by Anonymous
16

Question

Find the derivative of cos(x² + bx + c)

Solution

Let y = cos(x² + bx + c)

To finD : Derivative of y

Now,

  \tt{y' =  \dfrac{d[cos( {x}^{2} + bx + c)] }{dx} } \\  \\  \longrightarrow \:  \tt{y' =  - sin( {x}^{2} + bx + c). \frac{d( {x}^{2} + bx + c) }{dx}  } \\  \\  \longrightarrow \:  \tt{y' = [ - sin( {x}^{2}  + bx + c)].(2x + b)} \\  \\  \longrightarrow \:   \boxed{ \boxed{\tt{y' =  - 2x \: sin( {x}^{2} + bx + c)  - b \: sin( {x}^{2}   + bx + c)}}}

Answered by Sharad001
50

QuesTion :-

◗ Find the differentiation of cos ( x² + bx + c)

Answer :-

\to \boxed{ \sf  \frac{dy}{dx}  =- (2x + b)  \:  \sin( {x}^{2}  + bx + c) \: }  \\

SoluTion :-

Let ,

 \to \sf y \:  =  \cos ( {x}^{2}  + bx + c)</p><p> \\  \\ \bf  differentiate \: with \: respect \: to \: x \\  \\  \to \sf \frac{dy}{dx}  =  -\sin( {x}^{2}  + bx + c)  \frac{d}{dx} ( {x}^{2}  + bx + c) \\  \\  \to \sf  \frac{dy}{dx}  =  -\sin( {x}^{2}  + bx + c)  \times  (2x + b) \\  \\  \to \boxed{\sf  \frac{dy}{dx}  = -(2x + b)  \:  \sin( {x}^{2}  + bx + c)}

Hope it will help you .

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

Similar questions