Physics, asked by shubhangsharma1502, 8 months ago


find dimension of a and b in equation (p+a/
 {v}^{2} ) (v-b)= RT p= pressure v=volume​

Answers

Answered by Ekaro
26

\large{\bf{\gray{\underline{\underline{\orange{Given:}}}}}}

{\bigstar}\tt\:{\huge(}P+\dfrac{a}{V^2}{\huge)}(V-b)=RT

  • P denotes pressure
  • v denotes volume

\large{\bf{\gray{\underline{\underline{\green{To\:Find:}}}}}}

We have to find dimension of a and b.

\large{\bf{\gray{\underline{\underline{\pink{Solution:}}}}}}

Only like quantities having the same dimensions can be added to or substracted from each other.

Dimension of a :

:\implies\sf\:[P]=\dfrac{[a]}{[V]^2}

:\implies\sf\:[a]=[P][V]^2

:\implies\sf\:[a]=[M^1L^{-1}T^{-2}][L^3]^2

:\implies\underline{\boxed{\bf{\red{[a]=[M^1L^5T^{-2}]}}}}

Dimension of b :

:\implies\sf\:[b]=[V]

:\implies\underline{\boxed{\bf{\blue{[b]=[L^3]}}}}

Similar questions