Find distance (acosA+bsinA,0) and (0,asinA-bcosA)
Answers
Answered by
4
Step-by-step explanation:
distance between two point A(x,y) & B(p,q)
is given by
=square root of [(x-p)²+(y-q)²]
=√[(x-p)²+(y-q)²]
Sony this expression
distance between (acosA+bsinA,0) & (0,asinA-bcosA)
is given by
=square root [( acosA+bsinA-0)²+(0-(asinA-bcosA))²]
=square root[( acosA+bsinA)²+(-asinA+bcosA)²]
=square root[( acosA+bsinA)²+(bcosA-asinA)²]
=square root[( a²cos²A+b²sin²A+2abcosAsinA)+(b²cos²A+a²sin²A-2abcosAsinA)]
by grouping terms
=square root[( a²cos²A+a²sin²A+2abcosAsinA)+(b²cos²A+b²sin²A-2abcosAsinA)]
=square root[( a²(cos²A+sin²A)+b²(cos²A+sin²A)]
=square root[( a²*1+b²*1]
=√(a²+b²)
Answered by
0
Step-by-step explanation:
PLEASE MARK ME AS BRAINLIST
Attachments:
Similar questions