Math, asked by Pardaman3403, 1 year ago

Find distance between p(a sin alpha,a cos alpha) and q(a cos alpha,-a sin alpha)

Answers

Answered by drashti5
108
hope this helps to u....
if you get ur right answer and like my ans fast plzzz mark as brainlist plzz.........,......
Attachments:
Answered by wifilethbridge
43

Answer:

\sqrt{2}a

Step-by-step explanation:

p =(x_1,y_1)=(a sin \alpha , a cos \alpha)

q=(x_2,y_2)=(a cos \alpha, - asin \alpha)

Distance between p and q

Distance formula : d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

pq=\sqrt{(a cos \alpha-a sin \alpha)^2+(-a sin \alpha-a cos \alpha)^2}

pq=\sqrt{(a^2 (cos \alpha-sin \alpha)^2+(a^2( sin \alpha-cos \alpha)^2}

pq=\sqrt{(a^2 (cos^2 \alpha+sin^2 \alpha-2 cos \alpha sin \alpha)+(a^2( cos^2 \alpha+sin^2 \alpha+2 cos \alpha sin \alpha)}

pq=\sqrt{a^2 (1-2 cos \alpha sin \alpha)+a^2( 1+2 cos \alpha sin \alpha)}

pq=\sqrt{2a^2}

pq=\sqrt{2}a

Hence The distance is \sqrt{2}a

Similar questions