Math, asked by hmzphsdmc, 10 days ago

find distance between the parallel lines 5x-3y-4 equals to 0 and 10x-6y-9 equals to zero​

Answers

Answered by TrustedAnswerer19
22

\pink{ \boxed{ \boxed{\begin{array}{cc} \bf \underline{ \maltese\:\:Page-\:1:\:\maltese}\\\\ \maltese  \bf \: we \: know \: that\:  \\  \\  \sf \: if \:  \:  \: ax + by + c_1 = 0 \:  \:  \:  \:  \: and \\  \sf \:  \: ax + by + c_2 = 0 \:  \:  \: are \: two \: parallel \:  \\  \sf \: line \: then \: distance \: between \: them \\  \\   \blue{\sf \: d =  \frac{ |c_1 - c_2| }{ \sqrt{ {a}^{2} +  {b}^{2}  } } \:  \: unit}  \\ \end{array}}}} \\  \\  \pink{ \boxed{\boxed{\begin{array}{cc} \bf \underline{ \maltese\:\:Page-\:2:\:\maltese}\\\\\maltese  \bf \: given \: that \\  \\    \bf \implies \: 5x   - 3y - 4 = 0 \:  \:  \:  -  -  - (1) \\  \\  and \\  \\  \blue{ {{\begin{array}{cc}\:  \bf \:  \: 10x  - 6y - 9 = 0  \\ \bf \implies \: 5x  - 3y  -  \frac{9}{2} = 0 \:  \:  \:  -  -  - (2) \\  \\   \orange{ {{\begin{array}{cc} \odot \:\: \bf   eqn.(1) \:  \: and \:  \: eqn.(2) \:  \: are \: prallel \\  \bf \: so \: distance \:  \: between \: them \\  \\  \bf \: d =   \frac{ | - 4 - ( -  \frac{9}{2} )| }{ \sqrt{ {5}^{2} +  {( - 3)}^{2}  } }  \\  \\  =  \frac{ | \frac{9}{2}  - 4| }{ \sqrt{25 + 9} }  \\  \\  =  \frac{  | \frac{9 - 8}{2} |  }{ \sqrt{34} } \\  \\  =  \frac{ | \frac{ 1}{2} | }{ \sqrt{34} }   \\  \\  =  \frac{1}{2 \sqrt{34} }  \: unit \end{array}}}} \end{array}}}}  \: \end{array}}}}

Answered by DeeznutzUwU
3

       \text{\huge{\underline{Solution:}}}

       \text{The two given equations are:}

       5x - 3y - 4 = 0 \text{ ------ (i)}

       10x - 6y - 9 = 0 \text{ ------ (ii)}

       \text{Dividing (ii) by 2}

\implies 5x - 6y - \dfrac92 = 0 \text{ ------ (iii)}

       \text{We know that, the distance between two parallel lines is:}

       d = \dfrac{|c_2-c_1|}{\sqrt{a^{2} + b^{2} }}

       \text{In our case:}

       a = 5

       b = -3

       c_1 = -4

       c_2 = -\dfrac92

\implies d = \dfrac{|-\dfrac92-(-4)|}{\sqrt{(5)^{2} + (-3)^{2}}}

\implies d = \dfrac{|-\dfrac92+4|}{\sqrt{25 + 9}}

\implies d = \dfrac{|\dfrac{-9+8}2|}{\sqrt{34}}

\implies d = \dfrac{|\dfrac{-1}2|}{\sqrt{34}}

\implies d = \dfrac{\dfrac{1}2}{\sqrt{34}}

\implies d = \boxed{\dfrac{1}{2\sqrt{34}} \text{ units}}

Similar questions