Math, asked by gyanisarki56, 2 months ago

Find divergence and Curl of f = (x2 + yz) i + (y2 + zx)j +
(z2 + xy) k.​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\mathsf{f=(x^2+yz)i+(y^2+zx)j+(z^2+xy)k}

\textbf{To find:}

\textsf{Divergence and curl of f}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{f=(x^2+yz)i+(y^2+zx)j+(z^2+xy)k}

\underline{\mathsf{Divergence\;of\;f:}}

\mathsf{=\dfrac{\partial\,f_1}{\partial\,x}+\dfrac{\partial\,f_2}{\partial\,y}+\dfrac{\partial\,f_3}{\partial\,z}}

\mathsf{=\dfrac{\partial(x^2+yz)}{\partial\,x}+\dfrac{\partial(y^2+zx)}{\partial\,y}+\dfrac{\partial(z^2+xy)}{\partial\,z}}

\mathsf{=2x+2y+2z}

\implies\boxed{\mathsf{Divergence\;of\;f=2(x+y+z)}}

\underline{\mathsf{Curl\;f:}}

=\left|\begin{array}{ccc}i&j&k\\\dfrac{\partial}{\partial\,x}&\dfrac{\partial}{\partial\,y}&\dfrac{\partial}{\partial\,z}\\f_1&f_2&f_3\end{array}\right|

\mathsf{=\left(\dfrac{\partial\,f_3}{\partial\,y}-\dfrac{\partial\,f_2}{\partial\,z}\right)i-\left(\dfrac{\partial\,f_3}{\partial\,x}-\dfrac{\partial\,f_1}{\partial\,z}\right)j+\left(\dfrac{\partial\,f_2}{\partial\,x}-\dfrac{\partial\,f_1}{\partial\,y}\right)k}

\mathsf{=\left(\dfrac{\partial(z^2+xy)}{\partial\,y}-\dfrac{\partial(y^2+zx)}{\partial\,z}\right)i-\left(\dfrac{\partial(z^2+xy)}{\partial\,x}-\dfrac{\partial(x^2+yz)}{\partial\,z}\right)j+\left(\dfrac{\partial(y^2+zx)}{\partial\,x}-\dfrac{\partial(x^2+yz)}{\partial\,y}\right)k}

\mathsf{=(x-x)i+(y-y)j+(z-z)k}

\mathsf{=(0)i+(0)j+(0)k}

\implies\boxed{\mathsf{Curl\,f=\overrightarrow{0}}}

Similar questions