Math, asked by UniqueGirl786, 9 months ago

Find domain and range of function 1/(1-x^2)​

Answers

Answered by Anonymous
3

Step-by-step explanation:

Given function

f(x) =  \dfrac{1}{1 -  {x}^{2} }

Clearly, f(x) is not defined when

1 -  {x}^{2}  = 0

i.e., x = ± 1

.°. dom ( f ) = R - { -1, 1 }

Also,

y =  \dfrac{1}{1 -  {x}^{2} }  \\  \\  =  > 1 -  {x}^{2}  =  \dfrac{1}{y}  \\  \\  =  > x =  \sqrt{1 -  \frac{ 1}{y} }

Clearly, x is not defined when

1 -  \dfrac{1}{y}  < 0 \:  \:  \: or \:  \:  \: 1 <  \dfrac{1}{y}  \:  \:  \: or \:  \:  \: y < 1

.°. range( f )= R - {y € R : y < 1} = {y € R : y ≥ 1}

Similar questions