Math, asked by Jangra10, 1 month ago

Find domain and range of real function
f(x) = x^2 + x

Please give the correct answer

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{f(x)=x^2+x}

Since the given function is a polynomial function, so,

\sf{\large{\bold{\green{dom(f)\in\,\mathbb{R}}}}}

Now, let \sf{\blue{y=x^2+x}}

This is in the form of  \sf{ax^2+bx+c}, where, \sf{a=1}

Here, \sf{a>0}, so, \sf{y=x^2+x} is a upward parabola

So, its range will be \sf{\bigg[-\dfrac{D}{4a},\infty\bigg) }

\sf{\therefore\,D=1-4=-3}

And,

\sf{\dfrac{D}{4a}=\dfrac{-3}{4}}

So,

\sf{\large{\bold{\green{range(f)\in\,\bigg[\dfrac{3}{4} ,\infty\bigg)}}}}

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {x}^{2} + x

Domain is defined as set of those values of x for which function is well defined.

As given function f(x) is a polynomial function.

So, Domain of f(x) is

\bf\implies \:\boxed{ \tt{ \: x \:  \in \: R \: }}

Range of the function f(x)

Given function is

\rm :\longmapsto\:f(x) =  {x}^{2} + x

can be rewritten as

\rm :\longmapsto\:f(x) =  {x}^{2} + x + \dfrac{1}{4} - \dfrac{1}{4}

can further re - written as

\rm :\longmapsto\:f(x) =  {x}^{2} + 2 \times \dfrac{1}{2}  \times x + \dfrac{1}{4} - \dfrac{1}{4}

\rm :\longmapsto\:f(x) =  {\bigg[x + \dfrac{1}{2} \bigg]}^{2} - \dfrac{1}{4}

\bf\implies \:f(x) \geqslant \:   -  \: \dfrac{1}{4}

\bf\implies \:f(x) \:  \in \: \bigg[ -  \: \dfrac{1}{4}, \:  \infty  \bigg)

Additional Information :-

\boxed{ \tt{ \:  |x|   <  y \:  \implies \:  - y < x < y \:  \: }}

\boxed{ \tt{ \:  |x| \leqslant   y \:  \implies \:  - y  \leqslant  x  \leqslant  y \:  \: }}

\boxed{ \tt{ \:  |x - z|  < y \:  \implies \: z - y < x < z + y \:  \: }}

\boxed{ \tt{ \:  |x - z| \leqslant y \:  \implies \: z - y  \leqslant  x  \leqslant  z + y \:  \: }}

Similar questions