Math, asked by jain97, 11 months ago

find du/dt if u=log(x+y+z) where x= cost ,y= sin^2 t and z= cos^2 t​

Answers

Answered by Harishkhatri
7

Answer:

find du/dt if u=log(x+y+z) where x= cost ,y= sin^2 t and z= cos^2 t

Answered by sonuojha211
8

Answer:

The result is:

\dfrac{-sint}{cost+1}

Step-by-step explanation:

Given:

u=log(x+y+z)

where x=cost,y=sin^2t,z=cos^2t

Hence differentiating by substituting the given values:

u=log(cost+sin^2t+cos^2t)

Let:

cost+sin^2t+cos^2t=m

Applying limit chain rule:

\dfrac{du}{dt}=\dfrac{du}{dm}\times \dfrac{dm}{dt}

Hence:

\dfrac{du}{dt}=\dfrac{d}{dm}[log(m)]\times \dfrac{d}{dt}[cost+sin^2t+cos^2t]

                           =\dfrac{1}{m}\times [-sint+2sint\cdot cost+2cost(-sint)]

Substituting the value of m.

                           =\dfrac{-sint}{cost+sin^2t+cos^2t}

As we know the formula sin^2x+cos^2x=1

Plugging this in above equation we get the result:

=\dfrac{-sint}{cost+1}

Similar questions