Math, asked by sohanmeghwal49076, 3 months ago

Find du/dx
when u = sin (x2 + y2), where a²x² + b²y² = c²​

Answers

Answered by senboni123456
14

Step-by-step explanation:

We have,

u =  \sin( {x}^{2} +  {y}^{2}  )  \:  \: and \:  \:  {a}^{2}  {x}^{2}  +  {b}^{2}  {y}^{2}  =  {c}^{2}  \\

 \implies {y}^{2} =  \frac{ {c}^{2} -  {a}^{2} {x}^{2}   }{ {b}^{2} }   \\

 \implies2y \frac{dy}{dx}  =  - 2 \frac{ {a}^{2} }{ {b}^{2} } x \\

 \implies \frac{dy}{dx}  =  \frac{ {a}^{2} x}{ {b}^{2}y }  \\

Also,

 \frac{du}{dx}  =  \cos( {x}^{2} +  {y}^{2}  ) . \{2x + 2y \frac{dy}{dx}  \} \\

 \implies \frac{du}{dx} =  \cos( {x}^{2} +  {y}^{2}  )  . \{ 2x + 2y. \frac{ {a}^{2}x }{ {b}^{2}y } \} \\

\implies \frac{du}{dx} = 2 x\cos( {x}^{2}  +  {y}^{2} ) . \{ \frac{ {b}^{2} +  {a}^{2}  }{ {b}^{2} }  \} \\

Answered by bhanupravalika25
1

Answer:

Step-by-step explanation:

Similar questions