Math, asked by tusharverma795, 11 months ago

find du/dx when u=xlogxy where x^3+y^3+3xy=1

Answers

Answered by preetitiwari79
6

Step-by-step explanation:

du/dx

u= xlogy

on putting the value of u

hope u undetstand....

Attachments:
Answered by harendrachoubay
6

\dfrac{du}{dx} =\dfrac{x}{y}(-\frac{x^{2}}{y^{2}+x})+\dfrac{1}{x} +\log xy

Step-by-step explanation:

We have,

u=\loog xy

Differentiating w.r,t, x, we get

\dfrac{du}{dx} =x\dfrac{1}{xy} (x\dfrac{dy}{dx}+y)+\log xy

\dfrac{du}{dx} =\dfrac{x}{y}\dfrac{dy}{dx}+\dfrac{1}{x} +\log xy   .....(1)

Also,

x^3+y^3+3xy=1

3x^2+3y^2\dfrac{dy}{dx} +3x\dfrac{dy}{dx} =0

\dfrac{dy}{dx}=-\frac{3x^{2}}{3y^{2}+3x} =-\frac{x^{2}}{y^{2}+x}

Putting the value of \dfrac{dy}{dx} in (1), we get

\dfrac{du}{dx} =\dfrac{x}{y}(-\frac{x^{2}}{y^{2}+x})+\dfrac{1}{x} +\log xy

Hence, \dfrac{du}{dx} =\dfrac{x}{y}(-\frac{x^{2}}{y^{2}+x})+\dfrac{1}{x} +\log xy.

Similar questions