Math, asked by vanshichhapru, 3 months ago

find dx/du when x=(u+1/u)²​

Answers

Answered by Anonymous
2

Given

 \tt \to \: x =  \bigg(u +  \dfrac{1}{u} \bigg)^{2}

To Find dx/du

First of all Simplify the Equation

 \tt \to \: x =  {u}^{2}  +  \dfrac{1}{ {u}^{2} }  + u \times  \dfrac{1}{u}

\tt \to \: x =  {u}^{2}  +  \dfrac{1}{ {u}^{2} }  +  \cancel{u}\times  \dfrac{1}{ \cancel{u}}

\tt \to \: x =  {u}^{2}  +  \dfrac{1}{ {u}^{2} }

Now dx/du is

 \tt \to \:  \dfrac{d ( {u}^{2} +   {u}^{ - 2}  ) }{du}

We know that

 \tt \to \:  \dfrac{d(f(x)  \pm \: g(x))}{dx}  =  \dfrac{d(f(x))}{dx}  \pm \dfrac{d(g(x))}{dx}

We Get

 \tt \to \:  \dfrac{d( {u}^{2} )}{du}  +  \dfrac{d( {u}^{ - 2}) }{du}

using Formula

  \to \tt \dfrac{d( {x}^{n} )}{dx}  = n {x}^{n - 1}

we get

 \tt \to \: 2u ^{2 - 1}  + ( - 2 {u}^{ - 2 - 1} )

 \tt \to 2u  - 2 {u}^{ - 3}

 \tt \to \: 2u -  \dfrac{2}{ {u}^{3} }

Answer

\tt \to \: 2u -  \dfrac{2}{ {u}^{3} }

Similar questions