find dx/dy : f(x) = 5.9x+√67x^x-8/2x^7+9
Answers
Answered by
8
Answer :
dy/dx = 5.9 + √67x^x(1+logx)-28x⁶
Solution :
- f(x) = 5.9x + √67x^x- 8/2x⁷ +9
- dy/dx = f'(x)
Note :
- d/dx (x^x) = x^x(1+logx)
Proof :
- Let x^x = t
- Apply log on both sides ,
- xlogx = logt
- Differentiate on both sides
- x(logx)'+logx(x)' = (logt)'
- x(1/x)+logx = 1/t dt/dx
- 1+logx = 1/t dt/dx
- dt/dx = t(1+logx)
- dt/dx = x^x(1+logx)
- d/dx(x^x) = x^x(1+logx)
Solution :
- f(x) = 5.9x + √67x^x- 8/2x⁷ +9
- f'(x) = d/dx(5.9x + √67x^x- 8/2x⁷ +9)
- dy/dx = 5.9dx/dx + √67 d(x^x)dx - 8/2 d(x⁷)dx + d(9)/dx
- dy/dx = 5.9 + √67 x^x(1+logx) -8/2 7x⁶ + 0
- dy/dx = 5.9 + √67x^x(1+logx)-28x⁶
Similar questions