Math, asked by junedahmad4173, 7 months ago

Find dy/d's if x= 15 ( t + sin t ) ; y = 18 ( 1- cos t)

Answers

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) Find dy/dx if x=15(t+sint) and y=18(1-cost) .

 \:  \:  \underline{ \boxed { \bf{ \divideontimes \: answer}}}

 \: \\   \mapsto \displaystyle \tt{x = 15(t + sint)....given \: equation}

 \:  \bullet \underline{ \bf{differentiating \: the \: equation \: with \: respect \: to \: t}}

 \:  \:  \implies \displaystyle \tt{ \frac{dx}{dt}  = 15t + 15sint}

 \:  \:  \bullet \underline{ \bf{by \: using \: chain \: rule}}

 \:  \implies \displaystyle \tt{ \frac{dx}{dt}  = 15 + 15cost}

 \:  \:   \\ \implies \displaystyle \tt{ \frac{dx}{dt}  = 15(1 + cost}).....(1)

 \:  \:  \\  \divideontimes \boxed{ \displaystyle \tt{ \frac{dx}{dt}  = 15(1 + cost)}}....(1)

 \:  \:   \bullet \underline{\bf{differentiating \: the \: equation \: with \: respect \: to \: t}}

 \:  \: \\   \mapsto \displaystyle \tt{y = 18(1 - cost)}....given \: equation

 \:  \:  \implies \displaystyle \tt{ \frac{dy}{dt}  = 18 - 18cost}

 \:  \:  \implies \displaystyle \tt{ \frac{dy}{dt}  = 0 - 18 \times  - sint}

 \:  \:  \implies \displaystyle \tt{ \frac{dy}{dt}  = 18sint}

 \:  \divideontimes  \boxed{ \displaystyle \tt{ \frac{dy}{dt}  = 18sint}}........(2)

 \:  \  \bullet  \underline{\displaystyle \sf{dividing \: equation \: (1) \: and \: (2)}}

 \:  \:  \implies \displaystyle \tt{ \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} }  =  \frac{18sint}{15(1 + cost)} }

 \:  \implies \displaystyle \tt{ \frac{dy}{dx}  =   \cancel \frac{18}{15}  \frac{sint}{(1 + cost)} }

 \:  \:  \implies \displaystyle \tt{ \frac{dy}{dx}  =  \frac{6sint}{5 {(cos \frac{t}{2}) }^{2} }}

 \:  \\  \:  \implies \boxed{ \displaystyle \tt{ \frac{dy}{dx}  =  \frac{6sint}{5({cos \frac{t}{2} })^{2} } }}is \: the \: answer

Similar questions