Math, asked by tharneshtharun2003, 19 days ago

find dy/dx (2x-1)(3x+1)(4x2 -3)​

Answers

Answered by nhhh6481
0

(2×-1) (3×+1) (4×2-3) =-30

Answered by mathdude500
3

Appropriate Question :-

\rm \: Find \: \dfrac{dy}{dx} \: if \: y = (2x - 1)(3x + 1)( {4x}^{2} - 3) \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  y = (2x - 1)(3x + 1)( {4x}^{2} - 3) \\

\rm \:  y = ( {6x}^{2} - 3x + 2x - 1))( {4x}^{2} - 3) \\

\rm \:  y = ( {6x}^{2} - x - 1))( {4x}^{2} - 3) \\

\rm \:  y =  {4x}^{2} ( {6x}^{2} - x - 1)) - 3( {6x}^{2} - x - 1)  \\

\rm \:  y =   {24x}^{4} -  {4x}^{3} -  {4x}^{2} - {18x}^{2} + 3x + 3  \\

\rm \:  y =   {24x}^{4} -  {4x}^{3} -  {22x}^{2} + 3x + 3  \\

On differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{d}{dx}y =  \dfrac{d}{dx}\bigg( {24x}^{4} -  {4x}^{3} -  {22x}^{2} + 3x + 3 \bigg) \\

\rm \:  \dfrac{dy}{dx} =   24\dfrac{d}{dx}{x}^{4} -  4\dfrac{d}{dx}{x}^{3} -  22\dfrac{d}{dx}{x}^{2} + 3\dfrac{d}{dx}x + \dfrac{d}{dx}3 \\

We know,

\boxed{\rm{  \:\dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \: }} \\

So, on applying this result, we get

\rm \:  \dfrac{dy}{dx} =   24( {4x}^{3})  -  4( {3x}^{2})  -  22(2x) + 3(1) + 0 \\

\rm \:  \dfrac{dy}{dx} =   {96x}^{3}  -  {12x}^{2}  - 44x + 3 \\

Hence,

\rm\implies \:\boxed{\rm{  \:\rm \:  \dfrac{dy}{dx} =   {96x}^{3}  -  {12x}^{2}  - 44x + 3  \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions